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guarantees that 〈x y〉 + 〈x z〉 = 〈x y + z〉 . Now prove that 〈x αy〉 = α 〈x y〉
for all real α. This is valid for integer values of α by the result just established,
and it holds when α is rational because if β and γ are integers, then
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Because ‖x + αy‖ and ‖x − αy‖ are continuous functions of α (Exercise
5.1.7), equation (5.3.8) insures that 〈x αy〉 is a continuous function of α. There-
fore, if α is irrational, and if {αn} is a sequence of rational numbers such that
αn → α, then 〈x αny〉 → 〈x αy〉 and 〈x αny〉 = αn 〈x y〉 → α 〈x y〉 , so
〈x αy〉 = α 〈x y〉 .

Example 5.3.4

We already know that the euclidean vector norm on Cn is generated by the stan-
dard inner product, so the previous theorem guarantees that the parallelogram
identity must hold for the 2-norm. This is easily corroborated by observing that
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2).

The parallelogram identity is so named because it expresses the fact that the
sum of the squares of the diagonals in a parallelogram is twice the sum of the
squares of the sides. See the following diagram.
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Example 5.3.5

Problem: Except for the euclidean norm, is any other vector p-norm generated
by an inner product?

Solution: No, because the parallelogram identity (5.3.7) doesn’t hold when
p 
= 2. To see that ‖x + y‖2
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is not valid for

all x,y ∈ Cn when p 
= 2, consider x = e1 and y = e2. It’s apparent that
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