guarantees that $\langle\mathbf{x} \mid \mathbf{y}\rangle+\langle\mathbf{x} \mid \mathbf{z}\rangle=\langle\mathbf{x} \mid \mathbf{y}+\mathbf{z}\rangle$. Now prove that $\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x} \mid \mathbf{y}\rangle$ for all real α. This is valid for integer values of α by the result just established, and it holds when α is rational because if β and γ are integers, then

$$
\gamma^{2}\left\langle\mathbf{x} \left\lvert\, \frac{\beta}{\gamma} \mathbf{y}\right.\right\rangle=\langle\gamma \mathbf{x} \mid \beta \mathbf{y}\rangle=\beta \gamma\langle\mathbf{x} \mid \mathbf{y}\rangle \Longrightarrow\left\langle\mathbf{x} \left\lvert\, \frac{\beta}{\gamma} \mathbf{y}\right.\right\rangle=\frac{\beta}{\gamma}\langle\mathbf{x} \mid \mathbf{y}\rangle .
$$

Because $\|\mathbf{x}+\alpha \mathbf{y}\|$ and $\|\mathbf{x}-\alpha \mathbf{y}\|$ are continuous functions of α (Exercise 5.1.7), equation (5.3.8) insures that $\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle$ is a continuous function of α. Therefore, if α is irrational, and if $\left\{\alpha_{n}\right\}$ is a sequence of rational numbers such that $\alpha_{n} \rightarrow \alpha$, then $\left\langle\mathbf{x} \mid \alpha_{n} \mathbf{y}\right\rangle \rightarrow\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle$ and $\left\langle\mathbf{x} \mid \alpha_{n} \mathbf{y}\right\rangle=\alpha_{n}\langle\mathbf{x} \mid \mathbf{y}\rangle \rightarrow \alpha\langle\mathbf{x} \mid \mathbf{y}\rangle$, so $\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x} \mid \mathbf{y}\rangle$.

Example 5.3.4

We already know that the euclidean vector norm on \mathcal{C}^{n} is generated by the standard inner product, so the previous theorem guarantees that the parallelogram identity must hold for the 2-norm. This is easily corroborated by observing that

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|_{2}^{2}+\|\mathbf{x}-\mathbf{y}\|_{2}^{2} & =(\mathbf{x}+\mathbf{y})^{*}(\mathbf{x}+\mathbf{y})+(\mathbf{x}-\mathbf{y})^{*}(\mathbf{x}-\mathbf{y}) \\
& =2\left(\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}\right)=2\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{y}\|_{2}^{2}\right) .
\end{aligned}
$$

The parallelogram identity is so named because it expresses the fact that the sum of the squares of the diagonals in a parallelogram is twice the sum of the squares of the sides. See the following diagram.

Example 5.3.5

Problem: Except for the euclidean norm, is any other vector p-norm generated by an inner product?

Solution: No, because the parallelogram identity (5.3.7) doesn't hold when $p \neq 2$. To see that $\|\mathbf{x}+\mathbf{y}\|_{p}^{2}+\|\mathbf{x}-\mathbf{y}\|_{p}^{2}=2\left(\|\mathbf{x}\|_{p}^{2}+\|\mathbf{y}\|_{p}^{2}\right)$ is not valid for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}^{n}$ when $p \neq 2$, consider $\mathbf{x}=\mathbf{e}_{1}$ and $\mathbf{y}=\mathbf{e}_{2}$. It's apparent that $\left\|\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right\|_{p}^{2}=2^{2 / p}=\left\|\mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}\right\|_{p}^{2}$, so

$$
\left\|\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right\|_{p}^{2}+\left\|\mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}\right\|_{p}^{2}=2^{(p+2) / p} \quad \text { and } \quad 2\left(\left\|\mathbf{e}_{\mathbf{1}}\right\|_{p}^{2}+\left\|\mathbf{e}_{\mathbf{2}}\right\|_{p}^{2}\right)=4 .
$$

